Daphniglaucins A and B, Novel Polycyclic Quaternary Alkaloids from Daphniphyllum glaucescens

Jun'ichi Kobayashi,*,[†] Hiroshi Takatsu,[†] Ya-Ching Shen,[‡] and Hiroshi Morita[†]

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan, and Institute of Marine Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan 80424, Republic of China

jkobay@pharm.hokudai.ac.jp

Received March 6, 2003

ABSTRACT

Two cytotoxic quaternary *Daphniphyllum* alkaloids with an unprecedented fused-polycyclic skeleton containing a 1-azoniatetracyclo[5.2.2.0.^{1,6}0.^{4,9}]undecane ring system, daphniglaucins A (1) and B (2), have been isolated from the leaves of *Daphniphyllum glaucescens*. Their structures and relative stereochemistry were elucidated on the basis of spectroscopic data.

Daphniphyllum alkaloids are a structurally diverse group of natural products that are elaborated by the oriental tree "Yuzuriha" (*Daphniphyllum macropodum*; Daphniphyllaceae), which is a type of dioecious evergreen trees and shrubs native to Japan.^{1,2} These unusual ring systems have attracted great interest as challenging targets for total synthesis and for biosynthetic studies.³ Heathcock and co-

workers have proposed a biogenetic pathway for the *Daph-niphyllum* alkaloids and demonstrated a biomimetic total synthesis of several *Daphniphyllum* alkaloids.^{3,4}

Recently, some novel types of *Daphniphyllum* alkaloids^{5–10} such as daphnezomines A and B⁵ with a unique azaadamantane core, daphnezomines F and G⁶ with an 1-azabicyclo[5.2.2]undecane ring system, daphnicyclidins A-H,⁸ J, and K⁹ with a unique hexa- or pentacyclic ring system, and daphmanidin A¹⁰ with an unprecedented fusedhexacyclic skeleton were isolated from the leaves and stems

(9) Morita, H.; Yoshida, N.; Kobayashi, J. J. Org. Chem. 2002, 67, 2278–2282.

(10) Kobayashi, J.; Ueno, S.; Morita, H. J. Org. Chem. 2002, 67, 6546–6549.

Vol. 5, No. 10

1733-1736

[†] Hokkaido University.

[‡] National Sun Yat-Sen University.

⁽¹⁾ For reviews of *Daphniphyllum* alkaloids, see: (a) Yamamura, S.; Hirata, Y. In *The Alkaloids*; Manske, R. H. F., Ed.; Academic Press: New York, 1975; Vol. 15, p 41. (b) Yamamura, S. In *The Alkaloids*; Brossi, A., Ed.; Academic Press: New York, 1986; Vol. 29, p 265.

^{(2) (}a) Jossang, A.; Bitar, H. E.; Pham, V. C.; Sevenet, T. J. Org. Chem. 2003, 68, 300–304. (b) Hao, X.; Zhou, J.; Node, M.; Fuji, K. Yunnan Zhiwu Yanjiu 1993, 15, 205–207. (c) Arbain, D.; Byrne, L. T.; Cannon, J. R.; Patrick, V. A.; White, A. H. Aust. J. Chem. 1990, 43, 185–190. (d) Yamamura, S.; Lamberton, J. A.; Niwa, M., Endo, K., Hirata, Y. Chem. Lett. 1980, 393–396 and references therein.

^{(3) (}a) Wallace, G. A.; Heathcock, C. H. J. Org. Chem. 2001, 66, 450– 454. (b) Heathcock, C. H. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 14323– 14327. (c) Heathcock, C. H.; Joe, D. J. Org. Chem. 1995, 60, 1131–1142. (d) Heathcock, C. H.; Kath, J. C.; Ruggeri, R. B. J. Org. Chem. 1995, 60, 1120–1130. (e) Heathcock, C. H. Angew. Chem. 1992, 104, 675–691. (f) Heathcock, C. H. Angew. Chem., Int. Ed. Engl. 1992, 31, 665–681 and references therein.

⁽⁴⁾ Ruggeri, R. B.; Hansen, M. M.; Heathcock, C. H. J. Am. Chem. Soc. **1988**, *110*, 8734–8736.

⁽⁵⁾ Morita, H.; Yoshida, N.; Kobayashi, J. J. Org. Chem. 1999, 64, 7208-7212.

⁽⁶⁾ Morita, H.; Yoshida, N.; Kobayashi, J. J. Org. Chem. 2000, 65, 3558–3562.

^{(7) (}a) Morita, H.; Yoshida, N.; Kobayashi, J. *Tetrahedron* **1999**, *55*, 12549–12556. (b) Morita, H.; Yoshida, N.; Kobayashi, J. *Tetrahedron* **2000**, *56*, 2641–2646.

⁽⁸⁾ Kobayashi, J.; Inaba, Y.; Shiro, M.; Yoshida, N.; Morita, H. J. Am. Chem. Soc. 2001, 123, 11402–11408.

Figure 1. Selected two-dimensional NMR correlations for daphniglaucins A (1) and B (2).

of *Daphniphyllum humile* and/or *Daphniphyllum teijismanni*. In a continuing search for structurally unique and biogenetically interesting *Daphniphyllum* alkaloids, daphniglaucins A (1) and B (2), two quaternary alkaloids with an unprecedented fused-polycyclic skeleton with a 1-azoniatetracyclo- $[5.2.2.0.^{1.6}0.^{4.9}]$ undecane ring system, were isolated from the leaves of *D. glaucescens*. This paper describes the isolation and structural elucidation of 1 and 2.

The leaves of *D. glaucescens* were extracted with MeOH, and the extract was partitioned between EtOAc and 3% tartaric acid. Water-soluble materials, which were adjusted at pH 9 with saturated Na₂CO₃, were extracted with CHCl₃. CHCl₃-soluble materials were subjected to an amino silica gel column (CHCl₃/MeOH, 1:0 \rightarrow 0:1), from which a fraction was eluted with CHCl₃/MeOH (7:3) and purified by C₁₈ HPLC (30% CH₃CN/0.1% TFA) to afford daphniglaucins A¹¹ (1, 0.009% yield) and B¹² (2, 0.002%) together with a known alkaloid, daphnilactone B.¹³

Daphniglaucin A (1) showed a molecular ion peak at m/z370 (M)⁺ in the FABMS, and the molecular formula, C₂₃H₃₂NO₃, was established by HRFABMS [m/z 370.2398, (M)⁺, Δ +1.6 mmu]. IR absorptions implied the presence of hydroxyl and ester carbonyl (3385 and 1730 cm⁻¹, respectively) functionalities. ¹H and ¹³C NMR data (see Supporting Information) revealed 23 carbon signals due to one tetrasubstituted olefin, one carbonyl, two sp³ quaternary carbons, seven sp³ methines, eight sp³ methylenes, one oxymethylene, and one methoxy group. Among them, two methylenes (δ_C 51.5; δ_H 3.64, δ_C 58.4; δ_H 3.10 and 3.68) and two methines (δ_C 89.1; δ_H 3.86, δ_C 82.8; δ_H 3.99) were ascribed to those bearing a nitrogen, while the methylene ($\delta_{\rm C}$ 56.2; $\delta_{\rm H}$ 3.80 and 3.88) was ascribed to that bearing an oxygen.

The ¹H-¹H COSY and HOHAHA spectra revealed connectivities of three partial structures **a** (C-1 to C-4, C-2) to C-18, and C-18 to C-19 and C-20), b (C-6 to C-7 and C-12, and C-11 to C-12), and c (C-13 to C-17) as shown in Figure 1. HMBC correlations were observed for H-19b to C-7 ($\delta_{\rm C}$ 51.5) and H₂-7 to C-1 ($\delta_{\rm C}$ 89.1), the last of which was also correlated to H₂-19, suggesting that C-1, C-7, and C-19 were connected to each other through a nitrogen atom. The connectivity of C-4 to a nitrogen atom was implied by the HMBC correlation for H-1 to C-4 ($\delta_{\rm C}$ 82.8). The chemical shifts of C-1, C-4, C-7, and C-19 indicated the presence of a neighboring quaternary nitrogen.¹⁴ The ¹⁵N NMR chemical shift (δ_N 99.2) of N-1, which was assigned by ¹H-¹⁵N HMBC correlations from H-2, H-3b, H-7, and H-18, also supported the presence of the quaternary nitrogen.¹⁵ HMBC cross-peaks for H-13 to C-1 and C-5 ($\delta_{\rm C}$ 59.2) and for H-4 to C-8 ($\delta_{\rm C}$ 48.4) indicated connectivities of C-1 to C-13 through C-8 and of C-4 to C-8 through C-5. The connectivity of C-21 to C-4 and C-6 through C-5 was implied by HMBC correlations for H₂-21 to C-4, C-5, and C-6 ($\delta_{\rm C}$ 40.9). In addition, HMBC correlations for H-13a, H₂-11, and H-17a to C-9 (δ_C 144.0) and for H₂-11 and H-17a to C-10 $(\delta_{\rm C} 136.1)$ indicated connectivities of C-8 to C-11 through C-9 and C-10 and of C-10 to C-17. A methoxy group was attached to C-22 by HMBC correlations for H₃-23 and H-14 to C-22 ($\delta_{\rm C}$ 176.1). Thus, the gross structure of daphniglaucin A was assigned as 1 having a unique fused polycyclic ring system containing a 1-azoniatetracyclo [5.2.2.0.^{1,6}0.^{4,9}]undecane ring (N-1, C-1–C-8, C-18, and C-19) as shown in Figure 1.

The relative stereostructure of **1** was deduced from correlations observed in the phase-sensitive NOESY spectrum as shown in the computer-generated three-dimensional drawing (Figure 2). The NOESY correlation of H-3b/H-13a

⁽¹¹⁾ Daphniglaucin A (1): colorless solid; $[\alpha]_D - 51^\circ$ (*c* 1.0, CH₃OH); IR (neat) ν_{max} 3385, 2930, 1730, 1688, 1200, and 1128 cm⁻¹; ¹H and ¹³C NMR data (see Supporting Information); FABMS *m*/*z* 370 (M)⁺; HRFABMS *m*/*z* 370.2398 (M; calcd for C₂₃H₃₂NO₃, 370.2382).

⁽¹²⁾ Daphniglaucin B (2): colorless solid; $[\alpha]_D - 30^\circ$ (*c* 0.6, CH₃OH); IR (KBr) ν_{max} 3385, 2935, 1736, 1685, 1200, and 1130 cm⁻¹; ¹H and ¹³C NMR data (see Supporting Information); FABMS *m*/*z* 400 (M)⁺; HRFABMS *m*/*z* 400.2502 (M; calcd for C₂₄H₃₄NO₄, 400.2488).

⁽¹³⁾ Toda, M.; Niwa, H.; Suzuki, K. T.; Yamamura, S. *Tetrahedron* **1974**, *30*, 2683–2688.

⁽¹⁴⁾ Wiemer, D. F.; Wolfe, L. K.; Fenical, W.; Strobel, S. A.; Clardy, J. Tetrahedron Lett. 1990, 31, 1973–1976.

⁽¹⁵⁾ Pettit, G. R.; Gieschen, D. P.; Pettit, W. E.; Rawson, T. E. Can. J. Chem. 1981, 59, 216–221.

Figure 2. Selected NOESY correlations (dotted arrows) and relative stereochemistry for daphniglaucins A (1) and B (2).

indicated that the cyclohexane ring (C-1-C-5 and C-8) took a boat form, which was supported by a W-type long-range coupling between H-1 and H-4, both equatorial, through a nitrogen.

Daphniglaucin B (2) was shown to have the molecular formula of $C_{24}H_{34}NO_4$ by HRFABMS [*m*/*z* 400.2502, (M)⁺, Δ +1.4 mmu], which was larger than that of 1 by a CH₂O unit. The ¹H and ¹³C NMR data (see Supporting Information) of 2 were analogous to those of 1 except for the following observation: a methoxy signal (δ_H 3.70) lacking in 1 appeared for 2, while a methine signal [δ_H 3.86 (H-1)] observed for 1 was absent for 2. One quaternary carbon (δ_C 119.4) was assigned as an amino acetal carbon.¹⁶ The HMBC spectrum showed correlations for H₃-24 to C-1 (δ_C 119.4) through an oxygen, suggesting that a methoxy group was connected to C-1. HMBC correlations as shown in Figure 1 gave rise to connectivities of partial structures $\mathbf{a}-\mathbf{c}$. Thus, daphniglaucin B (2) was assigned as the methoxy form at C-1 of daphniglaucin A (1).

The relative stereochemistry of **2** was elucidated from NOESY correlations as shown in Figure 2. The NOESY correlation of H-11b/H-21b (Figure 2) indicated that the seven-membered ring (C-5–C-6 and C-8–C-12) took a twist boat conformation similar to that of the crystal structure of daphnicyclidin A.⁸

A plausible biogenetic pathway for daphniglaucins A (1) and B (2) is proposed as shown in Scheme 1. Daphniglaucins A (1) and B (2) might be generated from yuzurimine-type alkaloids such as yuzurimine A^{17} and macrodaphniphyll-amine¹⁸ through a common imine intermediate **A**, which has been proposed as a precursor of the secodaphniphylline-type skeleton (**B**) by Heathcock *et al.*³ Loss of the leaving group

at C-4 by attack of the nitrogen to form the N-1–C-4 bond will give daphniglaucins A (1) and B (2). Furthermore, daphniglaucins A (1) and B (2) may be biogenetically related to daphnicyclidins.⁸

Daphniglaucins A (1) and B (2) exhibited cytotoxicity against murine lymphoma L1210 cells (IC₅₀ 2.7 and 3.9 μ g/mL, respectively) and human epidermoid carcinoma KB cells (IC₅₀ 2.0 and 10.0 μ g/mL, respectively) in vitro.¹⁹

(16) ¹³C NMR signals for sp³ quaternary carbons located at a cationic amino acetal are observed at lower fields than those located at an amino acetal: Lindquist. N.; Fenical, W. *Tetrahedron Lett.* **1986**, *27*, 275–280.
(17) Sakurai, H.; Irikawa, H.; Yamamura, S.; Hirata, Y. *Tetrahedron*

(17) Sakurai, H.; Irikawa, H.; Yamamura, S.; Hirata, Y. *Tetrahedron Lett.* **1967**, 2883–2888. Irikawa, H.; Yamamura, S.; Hirata, Y. *Tetrahedron*, **1972**, 28, 3727–3738.

Acknowledgment. The authors thank Mrs. S. Oka and Miss M. Kiuchi, Center for Instrumental Analysis, Hokkaido University, for measurements of FABMS. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Supporting Information Available: One- and twodimensional NMR spectra and ¹H and ¹³C NMR data for compounds **1** and **2**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL034388P

⁽¹⁸⁾ Nakano, T.; Saeki, Y. Tetrahedron Lett. 1967, 4791-4797.

⁽¹⁹⁾ Kishi, K.; Yazawa, K.; Takahashi, K.; Mikami, Y.; Arai, T. J. Antibiot. 1984, 37, 874-852.